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J. Phys. A: Math. Gen., Vol. 11, No. 2 ,  1978. Printed in Great Britain. @ 1978 

Another discussion of the axial vector anomaly and the index 
theorem? 

J S Dowker 
Department of Theoretical Physics, The University, Manchester M13 9PL, UK 

Received 7 October 1977 

Abstract. A derivation is presented of the axial anomaly in a background Riemannian 
manifold using zeta-function regularisation. This leads directly to the relation with the 
index theorem. A spin-1 index theorem is derived, giving the Hirzebruch signature 
theorem and the expression for the Euler number in terms of the B4 coefficients. Boun- 
dary effects are briefly mentioned. Some extensions are suggested. 

1. Introduction 

The importance of anomalous Ward identities in particle physics is widely appreci- 
ated. On the one hand, they have been used to place restrictions on the possible 
unified weak-electromagnetic field theories and on the other, to discuss the decay of 
pseudoscalar mesons. More recently ('t Hooft 1976a,b) their relevance to vacuum 
tunnelling has been explored. 

The anomalous divergence of the axial vector current in a background gravita- 
tional field was first discussed by Kimura (1969). His preferred result was 

My conventions are the (+ ---) signature and the Dirac equation 

(iy'V, - m)* = 0, 

i? = i@'YS$, 

v, = a, + r,. 
Then 

is = cl .vs r~  

with 

(E0123 = 1). 

Kimura obtained (1) both by perturbation theory, d la Adler (1969), and by a 
proper-time method following Schwinger (1951) and De Witt (1965). The former 
approach has been used by Delbourgo and Salam (1972) and Eguchi and Freund 
(1976) in more recent investigations. 

P An extended and amended version of a talk given at the second Gregynog Workshop on Quantisation in 
General Relativity, 31st August-3rd September 1977. 

347 



348 J S  Dowker 

In the present paper I wish to re-derive (l), in the Euclidean region, using the 
zeta-function regularisation method developed by Dowker and Critchley (1976, 
1977b) and by Hawking (1977a). This has various advantages, the major ones being 
elegance and, at least for external fields, generality. It also indicates most clearly the 
connection with the index theorem and I shall try to explain what this means, or says, 
in a physicist’s language rather than a mathematician’s. In 33  I present a simple- 
minded, numerological proof of the Hirzebruch signature theorem and relate it to the 
spin-1 index theorem. Section 4 briefly looks at boundary effects and in the final 
section I suggest some possible extensions. 

2. Euclidean axial anomaly 

From now on all quantities are defined in a negutive-definite, Euclidean signatured 
(- - - -) space with indices labelled from 1 to 4. For convenience I give some 
pertinent definitions and relations 

Dirac’s equation is formally unchanged, 

(iyL”V, - m)* = 0 

and $ is a four-component representation of the covering group of S0(4), Sp(4), 
isomorphic to SU(2)OSU(2). Specifically, in terms of two-component spinors, 
11, = (,$:), where 4+(&) belongs to the left (right) SU(2) group and I sometimes write 
this 

* = <t,O)O(O, 1 )  
with the specific representations, 

In flat space a’ = (il, ai), 3‘ = (il, -a’) where the cri are the standard Pauli 
matrices. In curved space the corresponding quantities can be defined via the vierbein 
method, if desired. 

Under O(4) vierbein rotations, roughly speaking (see Dowker and Dowker 1966a), 
4+ and 4- transform as 

4(k,  0- e x p ( i d L ” ” ( k  W ( k ,  0, (JL””)+ = JL”’, (3 1 

4+ = 4c1 9 01, 

where 

4-=4(0,t) 
with algebraically, 

J i j ( j ,  o)=J”(o,  j ) = E i j k J k  

f4( j ,  0)  = - f4(o,  j )  = J ~ ,  
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Ji being the spin-j angular momentum matrices ( = f ui for j = i). My notation here is 
simply that ( k ,  I)  refers to the spin-k representation of the left SU(2) group times the 
spin-l representation of the right one. 

The field transformations determine the form of the spinor connection r,. I shall 
not need its explicit form and only record here the generalised Ricci identity, which 
defines the spinor curvature, 

V [ , V Y ] 4 ( k ,  ~ ) = $ i R , v m ~ J u 5 ( k ,  1 ) 4 ( k ,  1 )  

where 4 ( k ,  I)  transforms as 4 ( k ,  O)Od(O, 1). 
Consider now the axial vector current j c  and, following Schwinger (1951), 

concentrate on its vacuum (‘in-out’) average (jc). Then find that this is given as the 
coincidence limit, 

where SE is the Euclidean spinor Green function satisfying 

iBSE = 18E, -iSE$’ = 1 8 E  

with B = y ” ( x ) V , ( x )  and B‘= y ” ( x ‘ ) V , ( x ’ ) .  SE is the Euclidean 8-function related to 
the Minkowski one, 8, by 8 = i 8 E  (e.g. Schwinger 1970, p 146). I have set the mass 
equal to zero. 

In equation (4), and in the following manipulations, I have not been, nor shall I be, 
too careful to symmetrise the various expressions in x and x’. The reason is that, if SE 
is imagined to be replaced by a regularised quantity, as it will be, the coincidence limit 
is unambiguous. Furthermore, no parallel propagators have been introduced into the 
definition of the point split is”. In fact, the correct way of doing this, ,if there is one, has 
never been clear to me. In Schwinger’s (1951) original calculation a gauge-covariance 
preserving factor is effectively incorporated into is” by ensuring that any derivatives of 
the and 3 are of the correct covariant form (Schwinger 1951, equation (5.16)). In 
the present case this seems to be superfluous since the covariant derivatives, V , ,  are 
always in evidence. 

It might be worthwhile to point out, parenthetically, that the parallel propagator, 
I ( x ,  x’), hidden in Schwinger’s calculation, must be multivalued because 

a,I = ieA,I. 

In other discussions of j ’ ;  and j ”  it is not always clear whether I ( x ,  x’) is multivalued or 
not. If not, then its gradient has an extra term involving an integral of the field 
strength along the fixed path used to define it .  This amounts to a different definition of 
the current (cf Kimura 1969). 

Returning to our problem, define GE by 

SE = -iBGE = iGE$’ 

so that 

and 
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Then 

V,( is’) = 21im tr(y?Y2G&, x ’ ) )  
X ” X  

where the factor of 2 comes from differentiating with respect to x and x’, and I have 
set x ‘  equal to x wherever necessary, bearing in mind that GE is really regularised. 

It is now necessary to remark that if the equation 

S 2 $ n  = An$n 

has any zero eigenvalues, GE cannot be constructed and it is necessary to project out 
the corresponding zero eigenfunctions. Define GE by 

B2GE= 16E-P 

where P is the projection operator onto the null space of Y2. Then, instead of (6 )  there 
is 

v , ( ~ s ” )  = 2 lim tr(y:W2GE(x, x’)). 
x ” x  

In terms of the two-component representation this equation reads 

where the ‘E’ has finally been dropped. The ‘ + ’ and ‘ - ’ refer to the upper, ($,O), and 
lower, (0, i), components of $, respectively, and the 
Thus 

and 

o;dt = 1 - P; (i = + or -) 

(0, = C?~U”V,V”,  0- = Ul”C?”V,V,). 

trace is a two-dimensional one. 

(8) 

The implied regularisation is now made explicit by replacing the Green 
functions by their matrix powers, e’, as described in Dowker and Critchley (1976) 
where other, relevant references are given. The coincidence limit will be finite if s > 2 
and the desired, physical quantity is obtained by continuing s into the complex plane 
and then down to s = 1. This continuation replaces the powers cs by the zeta- 
function l ( s ) .  For simplicity I have not introduced the scaling parameter. 

To implement this procedure I write firstly 

If (8) is formally multiplied on the right by G:-’ there results 

o,G’f = Gi-1 

PiCi = 0. 

(s ’ 2 )  
if one uses the fact that 
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Then it is seen that the right-hand side of (9) consists of the difference of e$-' and 
CY-' so that the continuation to s = 1 produces 

V,(i:) = 2 tr diagx(5+(0)-5-(0)) 

or, in another notation, 

v , ( G ) = ~ ( c  ( x ,  a1;+(0>1x, a1-1 b ( x ,  ~ I { - ( O ) I ~ ,  b ) ) .  (10) 

Here, a and b are two-spinor indices and the operator zeta-functions i i ( s )  are given in 
terms of the eigenvalue problems 

Clin ,  i )=A' , ln,  i) 

by 

The standard theory of zeta-functions (e.g. Minakshisundaram and Pleijel 1949, 
theorem on pp 252, 253, Seeley 1967, Atiyah er a1 1973) gives the particular value 

( x ,  a/;i(O)lx, b )=[Eh(x) ] ,b - (x ,  alpilx, b) ,  (11) 

in Gilkey's notation (Gilkey 1975a). The trace on the spinor (='vector, or spin, 
bundle') indices turns the E4(x)  into B4(x)  and it is simply a question of evaluating this 
quantity. One can use Gilkey's general expressions, but for spin-4 De Witt's are 
sufficient (De Witt 1965). 

The results are, by now, fairly well known, but I write them out again for 
completeness. The general form of B4(x)  (=  (16r2)-' tr a2) is 

7 1 1  1 with the specific constants (a, p, y, 6, E )  for B: equal to (-=, -360, 60, 0, T&). Thus 
(1 0) reads 

where the & are normalised zero eigenvalue modes, with degeneracies n i .  
Equation (13) is a local statement. An integration over the manifold M, which is 

supposed to be closed (i.e. compact without boundary), yields the specific index 
theorem for the Dirac operator, 

1 
24 

R d4x = - -p ,  2 . . p a  ab', n+-n-= -- 1 
7 6 8 ~  

p being the Pontrjagin number of M. This result can be derived directly of course 
(Atiyah and Singer 1968, Seeley 1967, p 292, Atiyah et a1 1973). 

I shall give a general definition of the index in the next section and so simply point 
out here that the index is defined as the left-hand side of (14), i.e. the difference of the 
numbers of positive and negative helicity, massless Dirac fields. 

A simple mathematical consequence of (14) is that the Pontrjagin number of a 
compact manifold that admits a spin structure must be a multiple of 24 since the 
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left-hand side is an integer. Examples are, apparently, hard to find, but there exists at 
least one, the famous K3 surface. 

Physical consequences are not so easy to see. Unless we wish to remain in 
Euclidean signatured space, and perhaps argue along thermal lines (e.g. Charap and 
Duff 1977, unpublished report, Harrington and Shepard 1977), it is necessary to 
return to the (+ - - -) signature. Now equation (1) was derived in this signature. If 
it is integrated over all space-time and if equation (14) is used ad hoc for the 
right-hand side there results (cf ’t Hooft 1976a, b) 

AQ5 5 n+ - n- 

where AQ5 is the change in axial charge. If this argument is valid it shows that the 
divergence V j r  in the Euclidean region should not be compared with the divergence 
in the (+ - - -) region. Rather, it is the zero eigenfunction projection operators in 
(13) that take over this role. 

Equation (13) has also been derived by Nielsen et a1 (1977), using a point-splitting 
method. This would resolve a problem raised by Kimura (1969) who could not obtain 
agreement with the numerical factor of dz with the point-splitting technique. 

The relation between the axial anomaly and the index theorem has also been 
considered, in the context of gauge theories, by Jackiw and Rebbi (1977). They take 
the massless limit of a massive theory and use Pauli-Villars regularisation as advo- 
cated by Hageii (1969) and used by Delbourgo and Salam (1972). It is perhaps 
worthwhile pointing out again that this regularisation method has the inestimable 
advantage of being applicable at the Lagrangian level. 

3. Spin-1 index theorem 

At the risk of repeating standard material, I should like to give a description of the 
index theorem. The simplest one that I could find is the following. With the necessary 
explanations and examples, it is not the shortest form, but I hope it will be useful. 

Suppose that 9 is an elliptic operator from a bundle E to a bundle F. This means 
that, acting on a field with indices (=  a section of E) ,  9 produces another field with 
indices ( =  a section of F). For example, 9 could be u p V w  of 0 2. Then E would be 
the collection of (;, 0) spinor fields, 4+(x), and F that of ( 0 , ; )  spinors, 4-(x). 

Assume further that there are Hermitian inner products in the fibres of E and F. 
In our example, these would be just the products 4:(x). 4+(x) and 4 y ( x ) ,  @ ( x )  at 
each point x of the underlying manifold. (Each such point picks out a particular fibre 
from the bundle, i.e. picks out the set of values of the collection of fields at that point.) 
Then for two fields (‘sections’) there is defined a functional, or global, Hermitian inner 
product which is, for example, for the two spinor fields &(x) and 42(x), both of either 
+ or - type, 

With respect to this inner product 9 has a formal adjoint 9* in the usual way. 
9* takes F into E. For our spin-; example, 9* = P V , .  

It is now possible to define the ‘squared’ operators or Laplacians, 

@E = 99, DF = 99*, 
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which take E into E and F into F respectively. In the Dirac case OE = 0, and 
OF = 0- (see equation (8)). 

Both 9*9 and 99* are self-adjoint, elliptic and non-negative. 
Consider now the null spaces (‘kernels’) of 9 and 9*, i.e. the spaces of those fields 

satisfying 

9 4 E  = 0, 9 * 4 F  = 0. 

Such fields are called ‘harmonic’. According to a general theorem of elliptic opera- 
tors these linear vector spaces are finite dimensional and the index of 9 can be defined 
to be the difference in these dimensions. This is written as 

index (9) = dim ker 9 -dim ker 9*. 

The operators 9*9 and 99* have discrete spectra with finite multiplicities 
(degeneracy) and their non -zero eigenvalues coincide, including multiplicities, as is 
easily shown. Therefore, we have the useful, and general, results 

index (9) = Tr exp(-9*9t)-Tr exp(-99*t), all t, (15) 

index (9)=Tr( l+B*9)”-Tr(1+99*)”,  all s, (16) 

and 

or we can make the seemingly vacuous statement that the traced zeta-functions for 
99* and 9*9, after removing the zero eigenvalues, are identical: 

Tr $ds)=Tr 5.b). (17) 

The trace operation in (15), (16) and (17) stands for a trace over any convenient 
complete set of ‘states’. Thus, for an operator 4, 

a I Tr 4 = 1 (x ,  a(Alx,  a)g’/’  dx 

or, equivalently, 

Tr 4 = C (n lb jn ) .  
n 

The formal relation between the operator (i.e. untraced) zeta-functions is 

{ F  (s) = 9 { E ( s  + 1 )9*, 
which generalises (17). 

So far, the underlying manifold of the x ,  M, has been tacitly assumed compact, 
with or without boundary. If M has a boundary it is necessary to say something about 
boundary conditions. This is deferred until the following section. If M is closed, 
dM = 0, we do not have to worry about boundary conditions and can immediately 
use the asymptotic expansion (e.g. Atiyah et a1 1973), 

Tr exp( - nit) = tCd l2  B;,t”, ?LO, ( i  = E ,  F ) ,  (18) 
n=0.1, ... 

where d is the dimension of M and the B2,, are the integrated B2,(x),  
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in order to obtain the index as the constant term in (15) 

index (9) = B: - Bz. (19) 

The same result follows by setting s equal to zero in (17) in accordance with equation 
(1 l), for d = 4. 

The quantities B2"(x)  are constructed out of the objects occurring in the operator 
9, or 0. If 0 is a purely geometric operator, such as a covariant Laplacian on a 
Riemannian space, then the B2"(x)  are local combinations of quantities constructed 
from the metric, such as the curvature. This is the only case I am interested in and for 
spin-f in four dimensions equation (19) is just the previous result (14). 

Equation (19) is one statement of the index theorem. It can be shown, and this is 
important (e.g. Atiyah and Singer 1968), that the index of an operator is unchanged 
under continuous deformations of that operator. In our case this would amount to a 
continuous change in the metric and then the index theorem says that the particular 
geometric quantity found on the right-hand side must also be unchanged if the metric 
is altered. In other words, it must be a topological invariant. Equation (14) of course 
agrees with this. One can argue on dimensional and scaling grounds that the topolo- 
gical invariant has to be either the Euler or the Pontrjagin number and the latter is 
selected for parity reasons. 

After this standard discussion of the elementary index theorem I wish to apply it to 
the four-dimensional massless spin- 1 case (the Euclidean photon). Instead of using 
the notation and terminology of p-forms I prefer, at least here, to use the description 
in terms of spinors and tensors more familiar to physicists. I shall begin by writing 
Maxwell's equations in a form similar to the neutrino equations, thus, 

Q &V,@ = 0 &'"V,Y = -CP. (20) 

The first equation corresponds to a positive-helicity equation. 
The history of this form is given in earlier works (Dowker and Dowker 1966b, 

Dowker 1967a). It dates back to Rumer (1930). 
CP is a spinor transforming as the reduced representation ( j ,  0)O ( j -  1 , O )  in 

general, here as (1,O)O (0, 0), i.e. as a self-dual Maxwell field, (1, 0), plus a scalar, 
(0, 0). I write 

Y is a potential field transforming as ( j - 4 ,  4 )  in general, here as (i, f ) ,  i.e. as a 
four-vector. The Q Ir are 4 j  x 4 j  matrices, in general, here 4 x 4 and CYT, acting on 
(1, O)O(O, 0) produces (4,f). The precise form and properties of the c y F  and && are 
given in the cited references, but are not needed here. Suffice it to say that they 
possess all the algebraic properties, except completeness, that the U& and 3' have. 
Also, a'Vi corresponds to the operator 

(div grad) 0 

(Atiyah et a1 1975a). 
As well as the pair of equations (20) there will be a conjugate set involving 

(0, 1) O (0,O) and (i , $  ) fields, and the index theorem is to be applied to these two sets 
in turn. 
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Choose 9 = a ” V ,  and 9* = di”V,. It is found (Dowker and Dowker 1966b) that 
the equation 

9*9@ = 0 

decouples into one for I$ only, 
( V ~ v w - ~ R , “ ~ y l ,  O)JW(1, 0))4 = 0, 

V”V&O = 0.  

and one for 40 only, the minimally coupled scalar equation, 

The index theorem says, with obvious notation, 

n [ ( l ,  O)O(O, O)]-n(i, 1)=B4[(1,0)@(0, o)l-B4(f, f). (23) 

The decoupling (21), (22) means that 

B4[(1, o)@(o, o)]=Ba(l ,  o)+B4(0,0) 

and if we set dO=O (the only solutions of (22) are constants) the index theorem 
becomes 

n(l ,O)-n($,  $ ) = B ~ ( I ,  O)+B4(0, O)-B4(f,&). (24) 

n(1,O) is the number of regular self-dual harmonic two-forms ((1,O) is a self-dual 
two-form, @ - i l j  in Minkowski space) and n (f , i )  is the number of regular harmonic 
vector fields in the Lorentz gauge, V,A” = 0. 

The conjugate set of Maxwell equations produce the conjugate index theorem, 

n($,  t ) -n(O,  1)=B4($, $)-B4(O51)-B4(O, 01, ( 2 5 )  
where n (0 ,  1) is the number of regular anti-self-dual harmonic two-forms. 

The B4 coefficients are all given by integrals of expression (12). The particular 
values for the constants (a ,  p,  y, 8, E )  can be obtained in principle by substituting the 
relevant spinor curvatures and endomorphisms ‘E’ into Gilkey’s formulae (Gilkey 
1975a) and doing the traces over products of angular momentum matrices. (For (1,O) 
the endomorphism, E, is the second term in brackets in (21)). Actually, for the simple 
cases needed here one can avoid angular momentum theory. Some useful values are 
given in table 1. Our curvature conventions are those of Schouten (1954) (which are 
those of Gilkey 1975a and De Witt 1965). To obtain the Misner-Thorne-Wheeler 
convention reverse the sign of R. 

If (24) and (25) are added there results, using the tabulated values, 

n(l,O)-n(O, 1)=3p  (26) 
which is a statement of the Hirzebruch signature theorem (e.g. Hirzebruch 1966, 
Atiyah and Singer 1963, 1968, Atiyah er a1 1973), derived here in a lowbrow way. 

On subtraction (24) and (25) yield 

n(l,O)+n(O, 1)-2n(f ,  t)=B4(1, 0)+B4(0, 1)+2B4(0, o)-2B4($, f) (27) 
and we would expect that the right-hand side would be a topological invariant. This is 
indeed the case. By a fundamental identity (e.g. Gilkey 1975b) it is the Euler 
characteristic, ,y, of M, as can be checked numerically from the values in table 1. 

Note that the Euler characteristic appears as the difference of two index theorems. 
This is in agreement with the general treatment given by Atiyah, Patodi and Singer 
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Table 1. Values of the coefficients (a, p, 7, 8, e) in equation (12) for 16?r2B4(k, I ) .  Also 
included are the corresponding numbers for the Euler and Pontrjagin classes ( x 16~’). 

1 1 0 _ -  
180 

- 
180 

I .- 
720 

11 
360 -- 

- 11 
60 

1 w 0 

1 - 1 
15 7 2  
- 

- 1 
X 2 -1 0 0 
Euler class 

P 0 0 0 0 
Pontrjagin class 

0 

0 

0 

+B 
{-h 
0 

1 
2 
- 

(APS) (1975a, pp 66-7). I feel that the present discussion might assist those unfamiliar 
with the techniques used by APS. 

For consistency (26) says that the Pontrjagin number, p ,  of a closed manifold must 
be three times an integer. The only condition on the Euler number is that it is odd or 
even according as p is odd or even. 

For further interesting comments on the zero eigenvalue modes and their 
significance, see the work of Gibbons (‘Functional integrals in curved spacetime’, 
Munich, 1977). 

In the purely gravitational case it is not possible to derive ‘vanishing theorems’ as 
easily as for external gauge fields. That is, to prove that only one of n+, n- or of 
n(1, 0), n ( 0 , l )  is non-zero (Jackiw and Rebbi 1977). Consider equation (21) for the 
(1,O) spinor (self-dual two-form) and choose a closed Ricci-flat manifold, R,, = 0. 
Because J’”(1,O) is self-dual, RWmP( = CWmp, the Weyl tensor) can be replaced by its 
traceless and completely self-dual part, WbMa, say. Further, assume that this is zero, 
i.e. that the space is ‘half-flat’. Then 

V”V,4 = 0 

and so, in the usual manner, 

which implies that 4 has vanishing covariant derivative, V,C$ = 0. 

give 
Now construct the commutator Vr,Vylb, and use the generalised Ricci identity to 

c,mBJp8 (l,O)f$ = 0. 
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Because of the properties of the Weyl tensor this quantity is also self-dual on the 
pu pair of indices and so one finds 

WwmpJap4 = 0 

which is automatically satisfied. One cannot conclude that n(1,O) is zero. 
In the gauge field case, however, the transformation properties of IJ do not select 

the (anti) self-dual part of the gauge field, FWu, in the commutator of covariant 
derivatives, as they did above, and the corresponding condition makes the whole of 
I;;Lu vanish, which is not interesting, or makes IJ vanish, which means that the related 
degeneracy is zero. (Note that it is not enough to say that obviously V’V, is a 
positive-definite operator and hence has no normalisable zero eigenfunction.) 

In a combined situation, for example, a charged Dirac particle in a half-flat 
manifold, one would expect to obtain vanishing theorems. The explicit calculations of 
Pope bear this out (see 0 4). 

The Ricci-flat condition is, in fact, too strong. All that is required is that the scalar 
curvature, R,  should be zero. 

If R is not zero, but still with the space being half-flat, the equation for 4 is 

V”V,c$ - fricp = 0 

and the analysis proceeds along the lines indicated by Lichnerowicz (1963) with 
identical conclusions. These are left for the reader to draw. 

Similar considerations apply to the vector potential, Y. Thus, for a Ricci-flat 
space, whether half-flat or not, it is easy to show that n ( l , $ )  is zero, i.e. that there are 
no regular harmonic vectors (or ‘one-forms’). Another way of saying this is that if M 
is Ricci-flat, but not flat, the first Retti number is zero. This is sometimes called 
Myers’ theorem (see the work of Gibbons, already cited). When combined with the 
index theorems, (24) and (251, it gives 

n u ,  o>=  $cx+fP) ,  n(O,l)=$(,y-$p) 

in Ricci-flat spaces. 

the curvature is self-dual or anti-self-dual, and so 

n(1 ,  o)= &p or - ~ p ,  

If, in addition, the space is half-flat, ,y = * $ p ,  with the sign depending on whether 

1 5 n(O, 1 ) = & p  or - ~ p  

for Ricci-flat, half-flat spaces. Thus p must be a multiple of 12. If M is a spin 
manifold this is guaranteed since it then has to be a multiple of 24. 

4. Boundary effects 

If M is not closed, aM f 0, a number of problems arise and I wish to make a few 
general comments on these. 

Firstly, if it is wished to integrate equation (10) over the manifold, including the 
boundary, it is not correct to use expression (1 1) everywhere since this is true only if x 
is an interior point, i.e. x &  aM. However, a formal integration of (10) yields 
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where &(s) is the traced and integrated zeta-function, 

Since the non-zero eigenvalues of 9*9 and 99* coincide, the right-hand side of 
(28) vanishes and for consistency it would seem that the boundary conditions would 
have to be such as to make the left-hand side also zero, even though aM # 0. 

Apparently, it is not possible to impose local boundary conditions, such as Dirich- 
let or Neumann, and obtain a well posed elliptic problem. Instead APS 

(1975a, b, 1976) introduce a non-local condition which is essentially a restriction on 
the spectral decomposition of the fields on the boundary in terms of the eigenfunctions 
of the 'boundary part' of 9. Thus, for 4+, negative eigenvalues only are allowed, 
which implies, roughly speaking, that 4+ vanishes at the infinite limit of the cylinder 
that can be attached to aM in order to extend the normal coordinate at the boundary, 
U, to the outward range 0 to -W. The spectral restriction means that r$+ contains only 
terms like exp(-Au) with A < 0. 

For such boundary conditions &(O) is given, in four dimensions, by 

&(O)=B;+cd -&-Si 

where B4 has been given before, CA is an integral over the boundary of local quantities 
involving the second fundamental form of dM (e.g. Greiner 1971, Gilkey 1975b) and 
S is an additional term, a spectral invariant associated with dM. 

In the general case the equation 

becomes 

B f  + C," -Br  - C,' - 4 (h  + ~ ( 0 ) )  = n~ - nF = index (9), (29) 

where h is the degeneracy of the zero eigenvalue of the boundary part of 9 and 77 (s) is 
the APS spectral invariant defined by 

in terms of the eigenvalues, v,, of the boundary part of 9. 
Applied to the Dirac equation, charged and uncharged, equation (29) has been 

investigated and checked explicitly in a number of spaces by 
C N Pope (Cambridge, unpublished) following work by Hawking (1977b) on the 
Schwarzschild and Taub-NUT spaces who pointed out that there should be a residual 
boundary effect in these non-compact spaces to make up the defect between the left- 
and right-hand sides of (14) when applied to these spaces. 

A related calculation has been performed by Romer and Schroer (1977). 
However, for them the boundary terms in (29) arise from the left-hand side of (28) 
while the B i  + n-- B4 - n+ contribution is just the integrated right-hand side of (10) 
using (1 1) everywhere. 
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5. Discussion and extensions 

I now make some disconnected remarks on the preceding theory. 
( a )  Instead of constructing j t  as a bilinear expression in the spinor fields and 

obtaining ( j ; )  and V,(j;) therefrom, it is possible to use a variational approach. One 
could define an effective action W [ A , ]  as a functional of a background axial vector 
field A,. Then ( j y )  would be defined as 

and the divergence will be 

This approach has certain attractions, but I will not elaborate on them here. 
( 6 )  It is possible to derive an index theorem for arbitrary spin, j .  Equations (20) 

remain valid for any spin. Not only this, but there is a series of such pairs of equations 
(Dowker 1967b) and so there will be a series of index theorems, on the right-hand 
sides of which one would expect to find combinations of p and x. It is not likely that 
these relations would place any restriction on p stronger than that implied by the 
spin-4 case, equation (14), since the coefficients increase with increasing spin. 

(c) The APS invariant ~ ( 0 )  has been evaluated for the spin-4 case in various 
spaces. There is no difficulty in performing the corresponding calculation for the 
spin-1 theory, especially in view of proposition 4.20 of APS (1975a). 

( d )  It is straightforward to extend the results to the case when the fields 4 and q5 
belong to the carrier space of some internal gauge group (cf Jackiw and Rebbi 1977, 
Nielsen and Schroer 1977). 

( e )  In d dimensions the index is given by equation (19) and, in general, the 
anomalies will be determined by the Bd coefficients. Explicit forms for the coefficient 
Bg are available (Gilkey 1975a), so that the present analysis can be repeated in six 
dimensions. 

(f) Since the axial anomaly, (13), is the local form of the spin-4 index theorem, 
(14), it is reasonable to suppose that the spin-1 index theorem, (24) and (25) ,  would 
also have local forms. Presumably one would need two axial vector currents, possibly 
conserved classically; one composed from @ and Y and the other from the (indepen- 
dent) conjugate fields. In the Minkowski region this is not possible if the currents are 
bilinear in the fields and their Hermitian conjugates, although if one uses the fields 
and their transposes it is easy to construct currents from P=e) and the new ‘ y -  
matrices’, p”, 

However, these currents are not conserved classically. 
The brief note by Nielsen et a1 (1977) contains a description of two currents-the 

‘Euler’ and ‘Hirzebruch’ currents-which appear to be classically conserved four- 
vectors and which, when integrated over M, produce equations (27) and (26) respec- 
tively. 
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It is not yet clear to me why the algebra of the present paper does not also yield 
these currents naturally. 
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